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Background and Objective Model Interpretation

Age-related Macular Degeneration (AMD): Interpretation of XGBoost with mRMR feature selection method

e AMD is a leading cause of vision loss in the elderly, impacting millions in the US alone. Shapley Additive Explanations (SHAP)
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Step 1: Statistical filtering: filtering features using gene variance and statistical
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e Principal Component Analysis (PCA) ccocs '
O Ranks genes by the number of times they appear at top principal components with - "“*ﬁ" -
certain cutoff
e Random Forest
O Selects genes using the average permutation-based feature importance over 100
bootstrapped resamples
e Minimum-Redundancy Maximum-Relevance (MRMR)
O ldentifies features that maximizes the algorithm’s predictive power using an f-
statistic relevance score and minimized redundancy using Pearson correlation
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DREAMR Package

AMD Progression leads to vision loss

Objectives:

e Development of an interpretable machine-learning pipeline to predict AMD from
Genomic data.

e Discover crucial genomic signatures that contribute to AMD

e Development of generalizable Python Package for Gene analysis for complex diseases.

Dimensionality Reduction, (feature) Extraction, and Modeling for RNA

We developed a deployable and generalizable genomic analytics package for medical professionals!

e Broader Application: the pipeline and Python package are generalized for other Bootstrapped Mean Auc vs. Number of Features Modules Details & Functionalities
complex diseases. e Preprocessing Loading, Merging, Filtering by Variance, Normalization Tech-
' Tools niques (Z-score, Min-Max), Converting ENSG ID to Gene Name,
etc.
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