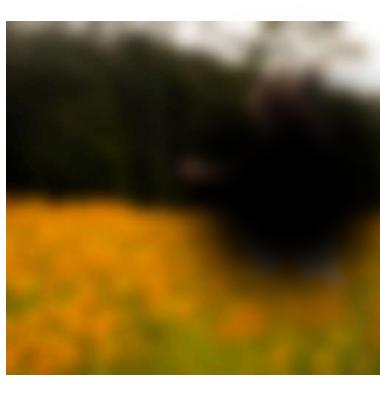


Background and Objective

Age-related Macular Degeneration (AMD):

- AMD is a leading cause of vision loss in the elderly, impacting millions in the US alone.
- AMD is caused by genetic and environmental factors.
- **Current Challenges**: There's substantial difficulty in translating DNA variants to biological understanding, impeding progress on finding specific genes causing AMD.
- The complexity of AMD lies in its **combination of genetic variants**, **curse of** dimensionality and gene processing complexity.
- Little is known about the risk factors of AMD.

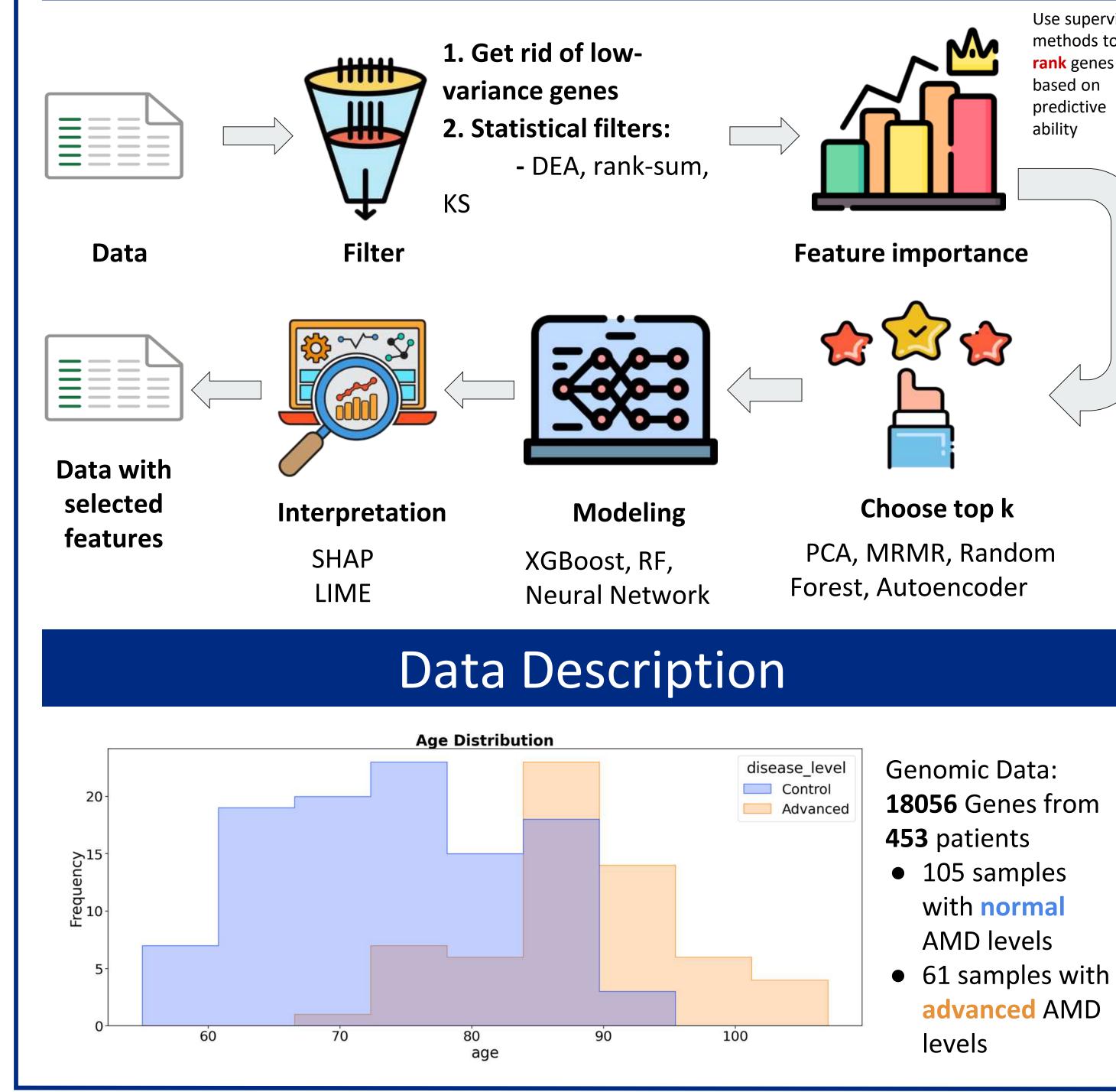


AMD Progression leads to vision loss

Objectives:

- Development of an interpretable machine-learning pipeline to predict AMD from Genomic data.
- **Discover crucial genomic signatures** that contribute to AMD
- Development of generalizable Python Package for Gene analysis for complex diseases. • **Broader Application:** the pipeline and Python package are **generalized for other**
- complex diseases.

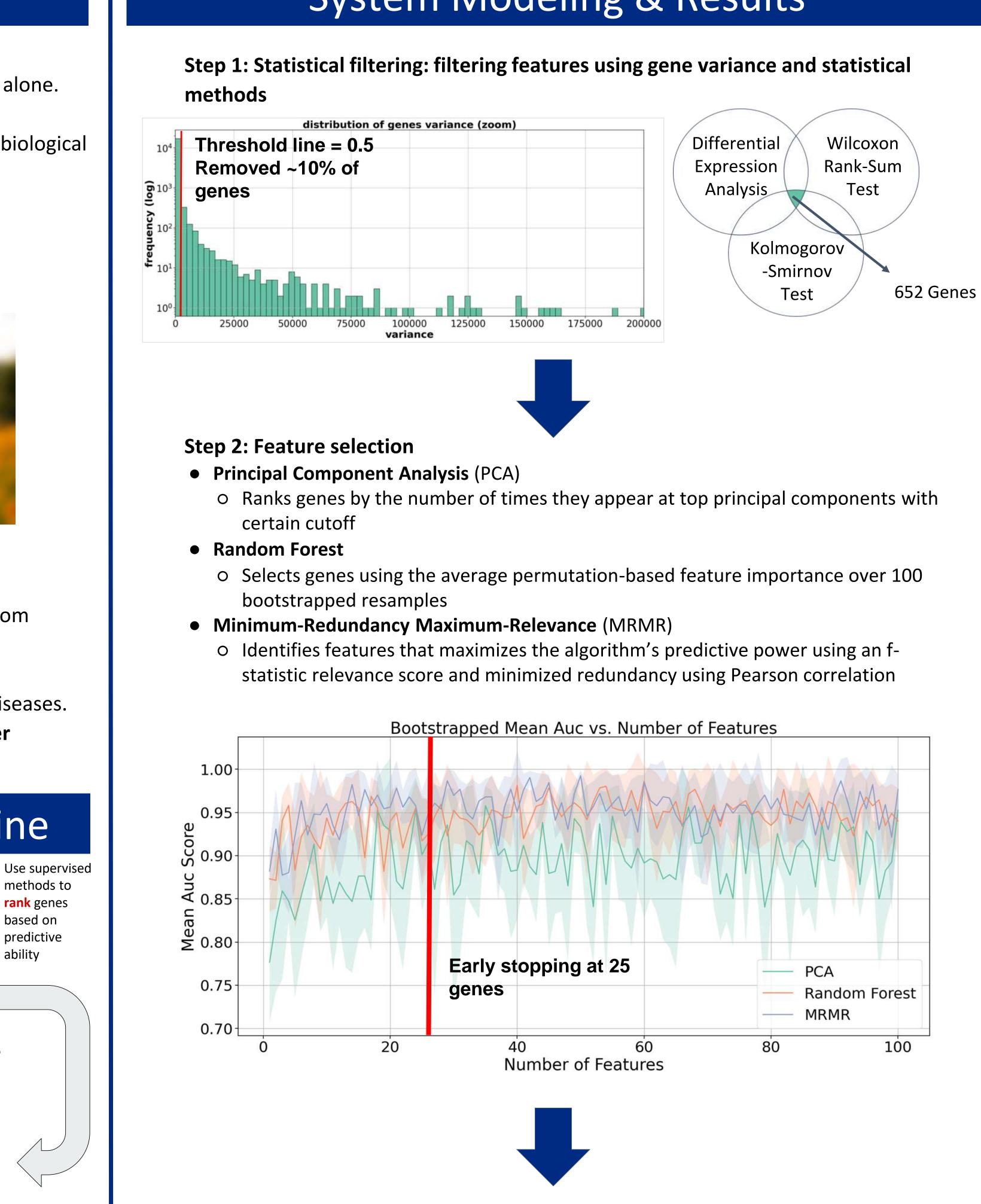
AMD Prediction & Gene Discovery Pipeline



Interpretable Machine Learning Pipeline to Identify Genomic Signatures in Age-Related Macular Degeneration

Duy Ha, Patrick Yee, Qingxin Yuan, Sujitha Ravichandran, Tian Xia, Wanying Xu Sponsor: Rinki Ratnapriya; Faculty Mentor: Arko Barman; Mentor: Maryam Khalid

System Modeling & Results



Step 3: Modeling using XGBoost (eXtreme Gradient Boosting)

• Used bootstrapping and hyperparameter tuning on selected Top 25 genes

Methods +XGBoost	Precision	Sensitivity	Specificity	F1 Score	AUC
РСА	0.840 ± 0.067	0.829 ± 0.068	0.924 ± 0.085	0.824 ± 0.068	0.835 ± 0.055
MRMR	0.900 ± 0.052	0.894 ± 0.054	0.922 ± 0.065	0.893 ± 0.054	0.946 ± 0.056
Random Forest	0.873 ± 0.021	0.870 ± 0.023	0.931 ± 0.028	0.869 ± 0.023	0.930 ± 0.037

- MRMR feature selection method + XGBoost model perform the best for AMD patient classification.
- Random Forest feature selection method + XGBoost model has the least standard deviation and thus it is the most stable model.

Model Interpretation

Interpretation of XGBoost with mRMR feature selection method **Shapley Additive Explanations** (SHAP)

1		
:	· ··· ·	CCDC18-AS1
• • • • •	• • • • • • • • • • • • • • • • • • • •	COL28A1
		CXCL12
	:	ANO3
	an fin a	FAM104A
		HCP5
	. 8 aligne .	PTX3
		SLC7A1
	41.6	S100B
		HLA-DQA1
		FAM66C
s 🌲 s	b P	ANKRD35
	00 000 000	CLRN1-AS1
•••••		CYP21A2
••	• •	STK24
4	-19	GYG2
	•}•	PSMB8-AS1
• •	H	GLB1L3
1		CCDC3
		Sum of 6 other features

0.5 1.0 1.5 -2.0 -1.5 -1.0 -0.5 0.0 SHAP value (impact on model outpu

we developed a deployable and g				
Modules	Details			
Preprocessing Tools	Loading niques (etc.			
EDA Tools	Visualiz Standar etc.			
Feature Filtering	Univari Rank S			
Feature Select	PCA, M			
Feature Scoring	AIC, B			
Modeling Classes	XGBoo			
Modeling Tools	Bootstr tionaliti			
Interpretation Tools	SHAP,			
Utilities	Saving a			

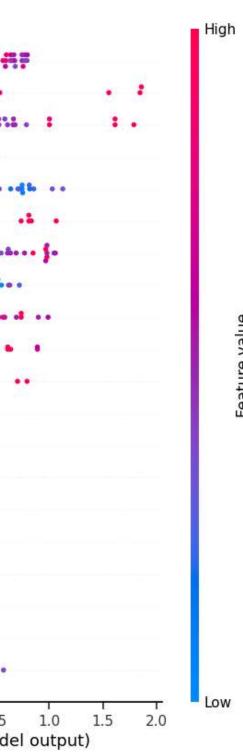
and functionalities.

Using DREAMR's Pipeline for AMD Findings

- Best performing **models may not show all** significant genes

Future Improvements:

Baylor Collegeof Medicine



SHAP applies game theoretic approach to explain the output of machine learning model and breaks down a prediction to show the impact of each feature.

Highly expressed genes in Control subjects **FAM104A, SLC7A1**

DREAMR Package

Dimensionality Reduction, (feature) Extraction, and Modeling for RNA We developed a deployable and generalizable genomic analytics package for medical professionals!

ls & Functionalities

g, Merging, Filtering by Variance, Normalization Tech-(Z-score, Min-Max), Converting ENSG ID to Gene Name,

ization of Feature Distributions, Visualizing Variance and ard Deviation, Summarizing Data, Finding Missing Values,

iate Generalized Linear Model Filter, KS-test, Wilcoxon Sum, Differential Expression Analysis

MRMR, Optimal Transport, Random Forest, XGBoost

BIC, Testing Agreement in Gene Rankings

ost, Random Forest, Neural Network, Autoencoder

rapping Class, Hyperparameter Tuning, Evaluation Functies and Plotting

LIME

and Loading Trained Models, Data Visualization Wrappers

Conclusion

DREAMR: Developed a **generalizable genomic analytics package**, featuring comprehensive data preprocessing, feature filtering and selection, modeling, and evaluation techniques

• Models classified AMD patients with high performance (~0.98 AUC).

• Interpretation (SHAP and LIME) identified potential disease-causing genes.

o e.g. MRMR's inherent nature to exclude redundant genes

• DREAMR provides a **variety of models** for users to choose according to their needs.

• Plans to extend DREAMR's capabilities to handle multiclass classification problems. • Potential usage example: classify AMD patients for **multiple disease stages.**